Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

4-[N,N-Bis(2-cyanoethyl)amino]pyridine

Jun Ni, Yi-Zhi Li, Wen-Bin Qi, Yong-Jiang Liu, Hui-Lan Chen and Zhi-Lin Wang*

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China Correspondence e-mail: llyyjz@nju.edu.cn

Received 9 April 2003
Accepted 9 June 2003
Online 22 July 2003
The title compound, 3,3'-(4-pyridylimino)dipropanenitrile, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4}$, has a twofold axis and consists of a pyridine ring head and two cyanoethyl tails, the three groups being linked by an N atom. The planar geometry around the amino N atom suggests conjugation with the π-system of the pyridine ring. The molecules are stacked in a layer structure via relatively weak to very weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bond interactions.

Comment

Hydrogen bonding is very important in determining the physical properties of materials, the conformation of biopolymers and the molecular packing, and in molecular recognition (Crabtree et al., 1998). Recently, increasing interest has concentrated on a series of new hydrogen-bonding interactions which are different from classical hydrogen bonding. The π-electrons, such as those of an aromatic ring and $\mathrm{C}-\mathrm{C}$ or $\mathrm{C}-\mathrm{N}$ multiple bonds, have been shown to be able to act as weak proton acceptors (Atwood et al., 1991; Brammer et al., 1991; Shubina et al., 1997; Yao et al., 1997). It is well known that 4 -(N, N-dimethylamino)pyridine (DMAP) and its derivatives are efficient catalysts in many organic reactions (Höfle et al., 1978; Scriven, 1983; Steglich \& Hoefle, 1969). As a derivative of DMAP, the title compound, (I), also has potential catalytic properties in some organic reactions

(I)
(Huang et al., 1994). In this work, the X-ray crystal structure analysis of (I) has been carried out in order to investigate the weak intermolecular hydrogen-bonding interactions.

The title compound, (I), consists of a pyridine ring head and two cyanoethyl tails (Fig. 1). Atoms N1, C3 and N2 lie on the

Figure 1
The molecular structure of (I), with ellipsoids drawn at the 30% probability level. [Symmetry code: $(A) 2-x, y, \frac{1}{2}-z$.]
twofold axis. The head and tails are all bonded to atom N2, which is not only in the plane of the pyridine ring, but also in the plane of the tails. The $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$ and $\mathrm{N} 2-\mathrm{C} 4-$ C 5 - C6 torsion angles are 179.3 (1) and 179.0 (2) ${ }^{\circ}$, respectively. Similar to aminopyridines and their derivatives (Chao et al., 1977; Ohms \& Guth, 1983), the sum of the bond angles around atom N 2 is 360° (Table 1). The dihedral angle between the ring plane and the plane defined by atoms $\mathrm{N} 2 / \mathrm{C} 4 /$ $\mathrm{C} 4\left(2-x, y, z-\frac{1}{2}\right)$ is $12.4(2)^{\circ}$. The $\mathrm{N} 2-\mathrm{C} 3$ bond length [1.374 (3) \AA] is about midway between those in 2-aminopyridine $[1.351$ (2) \AA; Chao et al., 1975a] and 3-aminopyridine [1.384 (4) Á; Chao et al., 1975b]. This geometric conformation reflects the conjugation between the lone pair of N 2 and the π system of the pyridine ring (Chao \& Schempp, 1977).

Figure 2
One crystal packing layer of (I). The molecular chains are along the b axis. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (A) $2-x, y, \frac{1}{2}-z ;(B) \frac{3}{2}-x, \frac{3}{2}-y,-z ;\left({ }^{\prime}\right) x$, $1+y, z$.]

The molecules stack as a layer structure. Neighboring layers slide laterally with respect to one another. Each layer is composed of numerous molecular chains. These parallel molecular chains extend along the b axis and all the molecules of a chain have the same head-to-tail orientation (Fig. 2). Adjacent chains have a different molecular orientation and are connected by $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{~N} 3\left(\frac{3}{2}-x, \frac{3}{2}-y,-z\right)$ hydrogen bonds (Table 2). In these chains, adjacent molecules are also connected by $\mathrm{C} 4-\mathrm{H} 4 B \cdots \mathrm{~N} 1(x, y+1, z)$ and $\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{~N} 3(x$, $y-1, z$) hydrogen bonds (see Fig. 2). The nitrile groups also act as proton acceptors in $\mathrm{C} 1-\mathrm{H} 1 \cdots C g 1(x, y-1, z)$, where $C g 1$ is the centre of the nitrile group. The geometry of this weak $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bond is similar to that observed in $2 \alpha, 4^{\prime} \beta$-dihydroxy- $2 \beta, 4^{\prime} \alpha$-diethynylspiro[5.5]undec- 2^{\prime}-ene (Subramanian et al., 1996).

The pyridine-ring planes are parallel to each other and the distance between adjacent layers is 3.687 (5) \AA. This is greater than the separations observed for stacking interactions (3.33.6 Å; Glówka et al., 1999; Hunter \& Sanders, 1990). Neighboring layers are linked by a $\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{~N} 3\left(\frac{3}{2}-x,-\frac{1}{2}+y\right.$, $\frac{1}{2}-z$) hydrogen bond (see Fig. 3), with $\mathrm{C} \cdots \mathrm{N}$ distances of 3.686 (4) \AA. Although this distance is longer than some

Figure 3
(a) The $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding and (b) the $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonding between adjacent layers, viewed along the a axis. H atoms not participating in the hydrogen bonds have been omitted for clarity. [Symmetry codes: (A) $2-x, y, \frac{1}{2}-z ;\left(A^{\prime}\right) x, 1-y, \frac{1}{2}+z ;\left({ }^{(\prime \prime}\right) 2-x$, $1-y,-z$.]
hydrogen-bond lengths, it can still be considered a reasonable length for weak hydrogen bonding (Komasa et al., 1998; Taylor \& Kennard, 1982). There are other types of hydrogen bonding between adjacent layers, as shown in Fig. 3, where pyridine rings act as weak proton acceptors. One molecule in a layer bonds to two neighboring layers through a $\mathrm{C} 4-$ $\mathrm{H} 4 A \cdots C g 2(2-x, 1-y,-z)$ hydrogen bond, where $C g 2$ denotes the centroid of the pyridine ring. The $\mathrm{C} 4 \cdots \mathrm{Cg} 2$ distance and the angle at $\mathrm{H} 4 A$ are 3.550 (5) \AA and 131°, respectively. The geometry of this hydrogen bond is similar to that observed in 3-O-benzyl-1,2- O-isopropylidene-5,6-dide-oxy- α-D-ribohex-5-yno-1,4-furanose (Ciunik \& Jarosz, 1998), N -(2,6-dimethylphenyl)-5-methylisoxazole-3-carboxamide (Lutz et al., 1996) and 4-(4H-1,2,4-triazol-4-yl)-2-chlorophenylmethanimine (Ciunik et al., 2002).

Experimental

4-Aminopyridine $(8.0 \mathrm{~g}, \quad 0.085 \mathrm{~mol})$ and hydroquinone $(0.02 \mathrm{~g}$, 0.18 mmol) were added to acrylonitrile (50 ml). The reaction mixture was refluxed for 3 h , filtered and the solid product recrystallized from dimethylformamide (DMF). The white powder of (I) was filtered off, washed with methanol and dried in a vacuum desiccator (yield: 14.5 g , 85.2%). Colorless block-shaped single crystals of (I) (m.p. 481.1482.7 K) were obtained by recrystallization from DMF. Elemental analysis calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4}$ (\%): C 65.98, H 6.04, N 27.98; found: C 65.79, H 6.30, N 27.84; IR data $\left(\mathrm{cm}^{-1}\right): 2256(s, C N), 1602(s$, $\left.\mathrm{C}=\mathrm{N}_{\mathrm{py}}\right), 1521\left(\mathrm{~s}, \mathrm{C}=\mathrm{C}_{\mathrm{py}}\right) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}): 201(M+1,100 \%)$.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4}$
$M_{r}=200.25$
Monoclinic, $C 2 / c$
$a=15.355$ (4) £
$b=8.321$ (2) \AA
$c=8.264$ (2) A
$\beta=92.12(1)^{\circ}$
$V=1055.2(5) \AA^{3}$
$Z=4$
$D_{x}=1.261 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 756 reflections
$\theta=2.5-27.1^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.30 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
φ and ω scans
2589 measured reflections
922 independent reflections
820 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.04$
$w R\left(F^{2}\right)=0.094$
$S=1.04$
922 reflections
71 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.02 P)^{2}\right.$
$+1.20 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

The positions of all H atoms were fixed geometrically $(\mathrm{C}-\mathrm{H}=0.93$ and $0.97 \AA$).

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve

Table 1
Selected geometric parameters ($\AA^{\circ}{ }^{\circ}$).

$\mathrm{C} 1-\mathrm{N} 1$	$1.328(2)$	$\mathrm{C} 4-\mathrm{N} 2$	$1.4462(19)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.371(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.525(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.394(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.454(3)$
$\mathrm{C} 3-\mathrm{N} 2$	$1.374(3)$	$\mathrm{C} 6-\mathrm{N} 3$	$1.132(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$125.81(19)$	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4^{\mathrm{i}}$	$121.54(9)$
$\mathrm{C} 2^{\mathrm{i}}-\mathrm{C} 3-\mathrm{C} 2$	$115.8(2)$	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4$	$121.54(9)$
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{N} 1-\mathrm{C} 1$	$114.0(2)$	$\mathrm{C} 4^{\mathrm{i}}-\mathrm{N} 2-\mathrm{C} 4$	$116.92(19)$

Symmetry code: (i) $2-x, y, \frac{1}{2}-z$.

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).
$C g 1$ is the centre of the nitrile group and $C g 2$ is the centroid of the pyridine ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots \cdot$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{Cg} 1^{\text {i }}$	0.93	2.80	3.667 (5)	140
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{~N} 3^{\text {i }}$	0.93	2.86	3.770 (5)	167
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{~N} 3^{\text {ii }}$	0.93	2.62	3.524 (3)	165
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{Cg} 2{ }^{\text {iii }}$	0.97	2.84	3.550 (5)	131
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{~N} 1^{\text {iv }}$	0.97	2.81	3.576 (4)	136
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{~N} 3^{\text {v }}$	0.97	2.74	3.686 (4)	164

Symmetry codes: (i) $x, y-1, z$; (ii) $\frac{3}{2}-x, \frac{3}{2}-y,-z$; (iii) $2-x, 1-y,-z$; (iv) $x, 1+y, z$; (v) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.
structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This project was supported by the Natural Science Foundation of China (No. 20171021), the Nanjing University Talent Development Foundation (research grant No. 0205005122) and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 2000028436).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1120). Services for accessing these data are described at the back of the journal.

References

Atwood, J. L., Hamada, F., Robinson, K. D., Orr, W. G. \& Vincent, R. L. (1991). Nature, 349, 683-684.

Brammer, L., Charnock, J. M., Goggin, P. L., Goodfellow, R. J., Orpen, A. G. \& Koetzle, T. F. J. (1991). J. Chem. Soc. Dalton Trans. pp. 1789-1798.
Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Chao, M. \& Schempp, E. (1977). Acta Cryst. B33, 1557-1564.
Chao, M., Schempp, E. \& Rosenstein, R. D. (1975a). Acta Cryst. B31, 29222924.

Chao, M., Schempp, E. \& Rosenstein, R. D. (1975b). Acta Cryst. B31, $2924-$ 2926.

Chao, M., Schempp, E. \& Rosenstein, R. D. (1977). Acta Cryst. B33, 18201823.

Ciunik, Z., Drabent, K. \& Szterenberg, L. (2002). J. Mol. Struct. 641, 175-182. Ciunik, Z. \& Jarosz, S. (1998). J. Mol. Struct. 442, 115-119.
Crabtree, R. H., Eisenstein, O., Sini, G. \& Peris, E. (1998). J. Organomet. Chem. 567, 7-11.
Glówka, M. L., Martynowski, D. \& Kozlowska, K. (1999). J. Mol. Struct. 474, 81-89.
Höfle, G., Steglich, W. \& Vorbrüggen, H. (1978). Angew. Chem. Int. Ed. Engl. 17, 569-583.
Huang, J. T., Cao, A. H., Shao, S. X., Sun, J. W. \& Liu, Z. H. (1994). Huaxue Shijie, 4, 188-190. (In Chinese.)
Hunter, C. A. \& Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.
Komasa, J., Szalewicz, K. \& Leszczyński, J. (1998). Chem. Phys. Lett. 285, $449-$ 454.

Lutz, B. T. G., Jacob, J. \& Van der Maas, J. H. (1996). Vib. Spectrosc. 12, 197206.

Ohms, U. \& Guth, H. (1983). Z. Kristallogr. 162, 174.
Scriven, E. F. V. (1983). Chem. Soc. Rev. 12, 129-161.
Shubina, E. S., Belkova, N. V. \& Epstein, L. M. (1997). J. Organomet. Chem. 536, 17-29.
Steglich, W. \& Hoefle, G. (1969). Angew. Chem. Int. Ed. Engl. 8, 981.
Subramanian, K., Lakshmi, S., Rajagopalan, K., Koellner, G. \& Steiner, T. (1996). J. Mol. Struct. 384, 121-126.

Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.
Yao, W. B., Eisenstein, O. \& Crabtree, R. H. (1997). Inorg. Chim. Acta, 254, 105-111.

